Inversion Lemma (Quantiles) Let F be a CDF and p∈(0,1) and t∈R. F(t)≥p⟺t≥QF−(p),F(t−)≤p⟺t≤QF+(p) If F is piecewise constant additionally: F(t)>p⟺t≥QF+(p),F(t−)<p⟺t≤QF−(p) F(t)F(t−)=sup{p∈(0,1)∣F(t)≥p}=sup{p∈(0,1)∣t≥QF−(p)}=inf{p∈(0,1)∣F(t−)≤p}=inf{p∈(0,1)∣t≤QF+(p)}