Marcs Notes

Home

❯

university

❯

Data Science

❯

Machine Learning

❯

ML Pipeline

ML Pipeline

03. Aug. 20251 min read

ML Pipeline

It’s a step by step guide to solve a Machine Learning Problem.

  1. Problem Definition
  2. Data Ingestion
  3. Data Preparation
  4. Data Segregation
  5. Model Training
  6. Model Evaluation
  7. Model Deployment
  8. Performance Monitoring

Related:

  • CRISP-DM
  • Knowledge Discovery Pipeline

Graphansicht

Backlinks

  • Data Mining in the ML and Statistics Community

Erstellt mit Quartz v4.5.1 © 2025

  • GitHub